,

Nonlinear Predictive Control Using Wiener Models

Computationally Efficient Approaches for Polynomial and Neural Structures

Gebonden Engels 2021 9783030838140
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant.
A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.

Specificaties

ISBN13:9783030838140
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer International Publishing

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Introduction to Model Predictive Control.- MPC Algorithms Using Input-Output Wiener Models.- MPC Algorithms Using State-Space Wiener Models.- Conclusions.- Index.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Nonlinear Predictive Control Using Wiener Models