,

Beginning Deep Learning with TensorFlow

Work with Keras, MNIST Data Sets, and Advanced Neural Networks

Paperback Engels 2022 9781484279144
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learners. 
You’ll start with an introduction to AI, where you’ll learn the history of neural networks and what sets deep learning apart from other varieties of machine learning. Discovery the variety of deep learning frameworks and set-up a deep learning development environment. Next, you’ll jump into simple classification programs for hand-writing analysis. Once you’ve tackled the basics of deep learning, you move on to TensorFlow 2 specifically. Find out what exactly a Tensor is and how to work with MNIST datasets. Finally, you’ll get into the heavy lifting of programming neural networks  and working with a wide variety of neural network types such as GANs andRNNs.  
Deep Learning is a new area of Machine Learning research widely used in popular applications, such as voice assistant and self-driving cars. Work through the hands-on material in this book and become a TensorFlow programmer!      

What You'll Learn
Develop using deep learning algorithms
Build deep learning models using TensorFlow 2
Create classification systems and other, practical deep learning applications

Who This Book Is For
Students, programmers, and researchers with no experience in deep learning who want to build up their basic skillsets. Experienced machine learning programmers and engineers might also find value in updating their skills.

Specificaties

ISBN13:9781484279144
Taal:Engels
Bindwijze:paperback
Uitgever:Apress

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Chapter 1: Introduction to Artificial Intelligence.- Chapter 2. Regression.- Chapter 3. Classification.- Chapter 4. Basic Tensorflow.- Chapter 5. Advanced Tensorflow.- Chapter 6. Neural Network.- Chapter 7. Backward Propagation Algorithm.- Chapter 8. Keras Advanced API.- Chapter 9. Overfitting.- Chapter 10. Convolutional Neural Networks.- Chapter 11. Recurrent Neural Network.- Chapter 12. Autoencoder.- Chapter 13. Generative Adversarial Network (GAN).- Chapter 14. Reinforcement Learning.- Chapter 15. Custom Dataset.</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Beginning Deep Learning with TensorFlow